List audit logs for your organization. You can optionally filter by time range.
curl --request GET \
--url https://public.api.serval.com/v2/audit-logs \
--header 'Authorization: Bearer <token>'{
"data": [
{
"id": "<string>",
"teamId": "<string>",
"timestamp": "2023-11-07T05:31:56Z",
"actor": {
"system": {
"displayName": "<string>"
},
"user": {
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"worker": {
"displayName": "<string>"
}
},
"context": {
"ipAddress": "<string>",
"userAgent": "<string>"
},
"eventType": {
"accessDeprovisioned": {
"accessRequest": {
"id": "<string>"
},
"entitlement": {
"id": "<string>",
"displayName": "<string>"
},
"resource": {
"id": "<string>",
"displayName": "<string>"
},
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"reason": "<string>",
"ticket": {
"id": "<string>"
}
},
"accessPolicyCreated": {
"accessPolicy": {
"id": "<string>",
"displayName": "<string>"
}
},
"accessPolicyDeleted": {
"accessPolicy": {
"id": "<string>",
"displayName": "<string>"
}
},
"accessPolicyUpdated": {
"accessPolicy": {
"id": "<string>",
"displayName": "<string>"
},
"changes": [
{
"boolChange": {
"oldValue": true,
"newValue": true
},
"jsonChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"numberChange": {
"oldValue": 123,
"newValue": 123
},
"stringChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"timestampChange": {
"oldValue": "2023-11-07T05:31:56Z",
"newValue": "2023-11-07T05:31:56Z"
}
}
]
},
"accessProvisioned": {
"accessRequest": {
"id": "<string>"
},
"entitlement": {
"id": "<string>",
"displayName": "<string>"
},
"resource": {
"id": "<string>",
"displayName": "<string>"
},
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"ticket": {
"id": "<string>"
}
},
"guidanceCreated": {
"guidance": {
"id": "<string>",
"displayName": "<string>"
}
},
"guidanceDeleted": {
"guidance": {
"id": "<string>",
"displayName": "<string>"
}
},
"guidanceDeployed": {
"guidance": {
"id": "<string>",
"displayName": "<string>"
},
"previousVersion": {
"id": "<string>",
"displayName": "<string>",
"guidanceId": "<string>",
"versionNumber": 123
},
"deployedVersion": {
"id": "<string>",
"displayName": "<string>",
"guidanceId": "<string>",
"versionNumber": 123
}
},
"guidanceUpdated": {
"guidance": {
"id": "<string>",
"displayName": "<string>"
},
"version": {
"id": "<string>",
"displayName": "<string>",
"guidanceId": "<string>",
"versionNumber": 123
},
"changes": [
{
"boolChange": {
"oldValue": true,
"newValue": true
},
"jsonChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"numberChange": {
"oldValue": 123,
"newValue": 123
},
"stringChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"timestampChange": {
"oldValue": "2023-11-07T05:31:56Z",
"newValue": "2023-11-07T05:31:56Z"
}
}
]
},
"userAddedToTeam": {
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"team": {
"id": "<string>",
"displayName": "<string>"
},
"role": "<string>"
},
"userInvited": {
"invitedUser": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"invitation": {
"id": "<string>"
}
},
"userOrganizationRoleChanged": {
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"organizationId": "<string>",
"oldRole": "<string>",
"newRole": "<string>"
},
"userRemovedFromTeam": {
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"team": {
"id": "<string>",
"displayName": "<string>"
},
"role": "<string>"
},
"userTeamRoleChanged": {
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"team": {
"id": "<string>",
"displayName": "<string>"
},
"oldRole": "<string>",
"newRole": "<string>"
},
"workflowCreated": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
}
},
"workflowDeleted": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
}
},
"workflowPublished": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
},
"previousVersion": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
},
"publishedVersion": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
}
},
"workflowRunRequested": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
},
"version": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
},
"workflowRun": {
"id": "<string>",
"workflowId": "<string>"
}
},
"workflowRunStarted": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
},
"version": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
},
"workflowRun": {
"id": "<string>",
"workflowId": "<string>"
}
},
"workflowUpdated": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
},
"version": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
},
"changes": [
{
"boolChange": {
"oldValue": true,
"newValue": true
},
"jsonChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"numberChange": {
"oldValue": 123,
"newValue": 123
},
"stringChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"timestampChange": {
"oldValue": "2023-11-07T05:31:56Z",
"newValue": "2023-11-07T05:31:56Z"
}
}
]
}
}
}
],
"nextPageToken": "<string>"
}Bearer authentication header of the form Bearer <token>, where <token> is your auth token.
Represents seconds of UTC time since Unix epoch 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59Z inclusive.
Non-negative fractions of a second at nanosecond resolution. Negative second values with fractions must still have non-negative nanos values that count forward in time. Must be from 0 to 999,999,999 inclusive.
Success
Show child attributes
Not all events are team-specific (though most are)
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp =
Timestamp.newBuilder().setSeconds(now.getEpochSecond())
.setNanos(now.getNano()).build();Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
toISOString()
method. In Python, a standard datetime.datetime object can be converted
to this format using
strftime with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
Configuration object.
Set exactly ONE of: system, user, worker
Show child attributes
Configuration object.
Set exactly ONE of: accessDeprovisioned, accessPolicyCreated, accessPolicyDeleted, accessPolicyUpdated, accessProvisioned, guidanceCreated, guidanceDeleted, guidanceDeployed, guidanceUpdated, userAddedToTeam, userInvited, userOrganizationRoleChanged, userRemovedFromTeam, userTeamRoleChanged, workflowCreated, workflowDeleted, workflowPublished, workflowRunRequested, workflowRunStarted, workflowUpdated
Show child attributes
Option: access_deprovisioned
Show child attributes
The user whose access was removed
Optional free-form reason (e.g., "expired", "revoked")
Option: access_policy_updated
Show child attributes
What actually changed
Show child attributes
Option: timestamp_change
Show child attributes
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp =
Timestamp.newBuilder().setSeconds(now.getEpochSecond())
.setNanos(now.getNano()).build();Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
toISOString()
method. In Python, a standard datetime.datetime object can be converted
to this format using
strftime with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp =
Timestamp.newBuilder().setSeconds(now.getEpochSecond())
.setNanos(now.getNano()).build();Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
toISOString()
method. In Python, a standard datetime.datetime object can be converted
to this format using
strftime with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
Option: access_provisioned — Access lifecycle events
Show child attributes
The user who now has access
Option: guidance_created
Show child attributes
Option: guidance_deleted
Show child attributes
Option: guidance_deployed
Show child attributes
null if first deployed
Show child attributes
This is the version ID, not the guidance ID
Show child attributes
This is the version ID, not the guidance ID
Option: guidance_updated
Show child attributes
What actually changed
Show child attributes
Option: timestamp_change
Show child attributes
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp =
Timestamp.newBuilder().setSeconds(now.getEpochSecond())
.setNanos(now.getNano()).build();Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
toISOString()
method. In Python, a standard datetime.datetime object can be converted
to this format using
strftime with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp =
Timestamp.newBuilder().setSeconds(now.getEpochSecond())
.setNanos(now.getNano()).build();Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
toISOString()
method. In Python, a standard datetime.datetime object can be converted
to this format using
strftime with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
Option: user_added_to_team
Show child attributes
Option: user_invited
Show child attributes
Option: user_organization_role_changed
Show child attributes
Show child attributes
Email serves as display name for users
Full name if available
Option: user_removed_from_team
Show child attributes
The role they had before removal
Option: user_team_role_changed
Show child attributes
Option: workflow_created
Show child attributes
Option: workflow_deleted
Show child attributes
Option: workflow_published
Show child attributes
null if first published
Show child attributes
This is the version ID, not the workflow ID
Show child attributes
This is the version ID, not the workflow ID
Option: workflow_run_requested
Show child attributes
Show child attributes
Option: workflow_run_started
Show child attributes
Show child attributes
Option: workflow_updated
Show child attributes
What actually changed
Show child attributes
Option: timestamp_change
Show child attributes
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp =
Timestamp.newBuilder().setSeconds(now.getEpochSecond())
.setNanos(now.getNano()).build();Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
toISOString()
method. In Python, a standard datetime.datetime object can be converted
to this format using
strftime with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
A Timestamp represents a point in time independent of any time zone or local calendar, encoded as a count of seconds and fractions of seconds at nanosecond resolution. The count is relative to an epoch at UTC midnight on January 1, 1970, in the proleptic Gregorian calendar which extends the Gregorian calendar backwards to year one.
All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap second table is needed for interpretation, using a 24-hour linear smear.
The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By restricting to that range, we ensure that we can convert to and from RFC 3339 date strings.
Example 1: Compute Timestamp from POSIX time().
Timestamp timestamp;
timestamp.set_seconds(time(NULL));
timestamp.set_nanos(0);Example 2: Compute Timestamp from POSIX gettimeofday().
struct timeval tv;
gettimeofday(&tv, NULL);
Timestamp timestamp;
timestamp.set_seconds(tv.tv_sec);
timestamp.set_nanos(tv.tv_usec * 1000);Example 3: Compute Timestamp from Win32 GetSystemTimeAsFileTime().
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
// A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
// is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
Timestamp timestamp;
timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));Example 4: Compute Timestamp from Java System.currentTimeMillis().
long millis = System.currentTimeMillis();
Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
.setNanos((int) ((millis % 1000) * 1000000)).build();Example 5: Compute Timestamp from Java Instant.now().
Instant now = Instant.now();
Timestamp timestamp =
Timestamp.newBuilder().setSeconds(now.getEpochSecond())
.setNanos(now.getNano()).build();Example 6: Compute Timestamp from current time in Python.
timestamp = Timestamp()
timestamp.GetCurrentTime()In JSON format, the Timestamp type is encoded as a string in the RFC 3339 format. That is, the format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" where {year} is always expressed using four digits while {month}, {day}, {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone is required. A proto3 JSON serializer should always use UTC (as indicated by "Z") when printing the Timestamp type and a proto3 JSON parser should be able to accept both UTC and other timezones (as indicated by an offset).
For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past 01:30 UTC on January 15, 2017.
In JavaScript, one can convert a Date object to this format using the
standard
toISOString()
method. In Python, a standard datetime.datetime object can be converted
to this format using
strftime with
the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
the Joda Time's ISODateTimeFormat.dateTime() to obtain a formatter capable of generating timestamps in this format.
Was this page helpful?
curl --request GET \
--url https://public.api.serval.com/v2/audit-logs \
--header 'Authorization: Bearer <token>'{
"data": [
{
"id": "<string>",
"teamId": "<string>",
"timestamp": "2023-11-07T05:31:56Z",
"actor": {
"system": {
"displayName": "<string>"
},
"user": {
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"worker": {
"displayName": "<string>"
}
},
"context": {
"ipAddress": "<string>",
"userAgent": "<string>"
},
"eventType": {
"accessDeprovisioned": {
"accessRequest": {
"id": "<string>"
},
"entitlement": {
"id": "<string>",
"displayName": "<string>"
},
"resource": {
"id": "<string>",
"displayName": "<string>"
},
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"reason": "<string>",
"ticket": {
"id": "<string>"
}
},
"accessPolicyCreated": {
"accessPolicy": {
"id": "<string>",
"displayName": "<string>"
}
},
"accessPolicyDeleted": {
"accessPolicy": {
"id": "<string>",
"displayName": "<string>"
}
},
"accessPolicyUpdated": {
"accessPolicy": {
"id": "<string>",
"displayName": "<string>"
},
"changes": [
{
"boolChange": {
"oldValue": true,
"newValue": true
},
"jsonChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"numberChange": {
"oldValue": 123,
"newValue": 123
},
"stringChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"timestampChange": {
"oldValue": "2023-11-07T05:31:56Z",
"newValue": "2023-11-07T05:31:56Z"
}
}
]
},
"accessProvisioned": {
"accessRequest": {
"id": "<string>"
},
"entitlement": {
"id": "<string>",
"displayName": "<string>"
},
"resource": {
"id": "<string>",
"displayName": "<string>"
},
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"ticket": {
"id": "<string>"
}
},
"guidanceCreated": {
"guidance": {
"id": "<string>",
"displayName": "<string>"
}
},
"guidanceDeleted": {
"guidance": {
"id": "<string>",
"displayName": "<string>"
}
},
"guidanceDeployed": {
"guidance": {
"id": "<string>",
"displayName": "<string>"
},
"previousVersion": {
"id": "<string>",
"displayName": "<string>",
"guidanceId": "<string>",
"versionNumber": 123
},
"deployedVersion": {
"id": "<string>",
"displayName": "<string>",
"guidanceId": "<string>",
"versionNumber": 123
}
},
"guidanceUpdated": {
"guidance": {
"id": "<string>",
"displayName": "<string>"
},
"version": {
"id": "<string>",
"displayName": "<string>",
"guidanceId": "<string>",
"versionNumber": 123
},
"changes": [
{
"boolChange": {
"oldValue": true,
"newValue": true
},
"jsonChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"numberChange": {
"oldValue": 123,
"newValue": 123
},
"stringChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"timestampChange": {
"oldValue": "2023-11-07T05:31:56Z",
"newValue": "2023-11-07T05:31:56Z"
}
}
]
},
"userAddedToTeam": {
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"team": {
"id": "<string>",
"displayName": "<string>"
},
"role": "<string>"
},
"userInvited": {
"invitedUser": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"invitation": {
"id": "<string>"
}
},
"userOrganizationRoleChanged": {
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"organizationId": "<string>",
"oldRole": "<string>",
"newRole": "<string>"
},
"userRemovedFromTeam": {
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"team": {
"id": "<string>",
"displayName": "<string>"
},
"role": "<string>"
},
"userTeamRoleChanged": {
"user": {
"id": "<string>",
"displayName": "<string>",
"email": "<string>",
"name": "<string>"
},
"team": {
"id": "<string>",
"displayName": "<string>"
},
"oldRole": "<string>",
"newRole": "<string>"
},
"workflowCreated": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
}
},
"workflowDeleted": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
}
},
"workflowPublished": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
},
"previousVersion": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
},
"publishedVersion": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
}
},
"workflowRunRequested": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
},
"version": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
},
"workflowRun": {
"id": "<string>",
"workflowId": "<string>"
}
},
"workflowRunStarted": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
},
"version": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
},
"workflowRun": {
"id": "<string>",
"workflowId": "<string>"
}
},
"workflowUpdated": {
"workflow": {
"id": "<string>",
"displayName": "<string>"
},
"version": {
"id": "<string>",
"displayName": "<string>",
"workflowId": "<string>",
"versionNumber": 123
},
"changes": [
{
"boolChange": {
"oldValue": true,
"newValue": true
},
"jsonChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"numberChange": {
"oldValue": 123,
"newValue": 123
},
"stringChange": {
"oldValue": "<string>",
"newValue": "<string>"
},
"timestampChange": {
"oldValue": "2023-11-07T05:31:56Z",
"newValue": "2023-11-07T05:31:56Z"
}
}
]
}
}
}
],
"nextPageToken": "<string>"
}